Skillnaden mellan korrelation och regression är en av de vanliga frågorna i intervjuer. Dessutom har många människor tvetydighet i att förstå dessa två. Så, läs en fullständig läsning av denna artikel för att få en tydlig förståelse för dessa två.
Jämförelsediagram
Grunder för jämförelse | Korrelation | regression |
---|---|---|
Menande | Korrelation är en statistisk åtgärd som bestämmer samförhållandet eller associeringen av två variabler. | Regression beskriver hur en oberoende variabel är numeriskt relaterad till den beroende variabeln. |
Användande | Att representera linjärt samband mellan två variabler. | För att passa en bästa linje och uppskatta en variabel på grundval av en annan variabel. |
Beroende och oberoende variabler | Ingen skillnad | Båda variablerna är olika. |
Pekar på | Korrelationskoefficienten anger i vilken utsträckning två variabler rör sig tillsammans. | Regression indikerar effekten av enhetsförändring i den kända variabeln (x) på den uppskattade variabeln (y). |
Mål | För att hitta ett numeriskt värde som uttrycker förhållandet mellan variabler. | Att uppskatta värden för slumpmässig variabel på grundval av värdena för fast variabel. |
Definition av korrelation
Termen korrelation är en kombination av två ord 'Co' (tillsammans) och relation (samband) mellan två kvantiteter. Korrelation är när man vid tidpunkten för studier av två variabler observerar att en enhetsförändring i en variabel återförvisas av en ekvivalent förändring i en annan variabel, dvs direkt eller indirekt. Också sägs variablerna vara okorrelerade när rörelsen i en variabel inte motsvarar någon rörelse i en annan variabel i en specifik riktning. Det är en statistisk teknik som representerar styrkan i sambandet mellan par av variabler.
Korrelation kan vara positiv eller negativ. När de två variablerna rör sig i samma riktning, dvs en ökning av en variabel kommer att resultera i motsvarande ökning av en annan variabel och vice versa, så anses variablerna vara positivt korrelerade. Till exempel : vinst och investering.
Tvärtom, när de två variablerna rör sig i olika riktningar, på ett sådant sätt att en ökning i en variabel kommer att resultera i en minskning av en annan variabel och vice versa, Denna situation kallas negativ korrelation. Till exempel : Pris och efterfrågan på en produkt.
Åtgärderna för korrelation ges enligt följande:
- Karl Pearsons korrelationskoefficient för produkt-moment
- Spearmans rangkorrelationskoefficient
- Punktdiagram
- Koefficient för samtidiga avvikelser
Definition av regression
En statistisk teknik för att uppskatta förändringen i den metriska beroende variabeln på grund av förändringen i en eller flera oberoende variabler, baserat på det genomsnittliga matematiska förhållandet mellan två eller flera variabler är känd som regression. Det spelar en viktig roll i många mänskliga aktiviteter, eftersom det är ett kraftfullt och flexibelt verktyg som brukade förutse tidigare, nuvarande eller framtida händelser utifrån tidigare eller aktuella händelser. Till exempel : På grundval av tidigare rekord kan ett företags framtida vinst uppskattas.
I en enkel linjär regression finns två variabler x och y, där y beror på x eller säger påverkas av x. Här kallas y som beroende, eller kriteriumvariabel och x är oberoende eller prediktorvariabel. Regressionslinjen för y på x uttrycks som under:
y = a + bx
var, a = konstant,
b = regressionskoefficient,
I denna ekvation är a och b de två regressionsparametrarna.
Viktiga skillnader mellan korrelation och regression
Punkterna nedan förklarar skillnaden mellan korrelation och regression i detalj:
- En statistisk åtgärd som bestämmer samförhållandet eller sammansättningen av två kvantiteter kallas korrelation. Regression beskriver hur en oberoende variabel är numeriskt relaterad till den beroende variabeln.
- Korrelation används för att representera det linjära förhållandet mellan två variabler. Tvärtom används regression för att passa den bästa linjen och uppskatta en variabel på grundval av en annan variabel.
- I korrelation finns det ingen skillnad mellan beroende och oberoende variabler, dvs korrelation mellan x och y liknar y och x. Omvänt är regressionen av y på x annorlunda än x på y.
- Korrelation indikerar styrkan i sambandet mellan variabler. I motsats till detta återspeglar regression effekten av enhetsförändringen i den oberoende variabeln på den beroende variabeln.
- Korrelation syftar till att hitta ett numeriskt värde som uttrycker förhållandet mellan variabler. Till skillnad från regression vars mål är att förutsäga värden för den slumpmässiga variabeln på basis av värdena för den fasta variabeln.
Slutsats
Med ovanstående diskussion är det uppenbart att det finns stor skillnad mellan dessa två matematiska begrepp, även om dessa två studeras tillsammans. Korrelation används när forskaren vill veta att huruvida de variabler som studeras är korrelerade eller inte, om ja, vad är deras associations styrka. Pearsons korrelationskoefficient betraktas som det bästa korrelationsmåttet. I regressionsanalys etableras ett funktionellt förhållande mellan två variabler för att göra framtida prognoser för händelser.