Om de på varandra följande termerna är i konstant förhållande å andra sidan är sekvensen geometrisk . I en aritmetisk sekvens kan termerna erhållas genom tillsättning eller subtraktion av en konstant till föregående term, varvid i fall av geometrisk progression erhålles varje term genom att multiplicera eller dela en konstant till föregående term.
Här, i denna artikel kommer vi att diskutera de signifikanta skillnaderna mellan aritmetisk och geometrisk sekvens.
Jämförelsediagram
Grunder för jämförelse | Aritmetisk sekvens | Geometrisk sekvens |
---|---|---|
Menande | Aritmetisk sekvens beskrivs som en lista över tal, där varje ny term skiljer sig från en föregående term med en konstant mängd. | Geometrisk sekvens är en uppsättning tal där varje element efter det första erhålles genom att multiplicera föregående tal med en konstant faktor. |
Identifiering | Vanlig skillnad mellan successiva termer. | Vanligt förhållande mellan successiva termer. |
Avancerad av | Addition eller subtraktion | Multiplikation eller Division |
Variation av termer | Linjär | Exponentiell |
Oändliga sekvenser | Avvikande | Divergerande eller konvergent |
Definition av aritmetisk sekvens
Aritmetisk sekvens hänvisar till en lista med tal, där skillnaden mellan successiva termer är konstant. För att helt enkelt, i en aritmetisk progression, lägger vi till eller subtraherar ett fast, icke-nolltal, varje gång oändligt. Om a är den första delen av sekvensen kan den skrivas som:
a, a + d, a + 2d, a + 3d, a + 4d ..
var, a = första termen
d = vanlig skillnad mellan termer
Exempel : 1, 3, 5, 7, 9 ...
5, 8, 11, 14, 17 ...
Definition av geometrisk sekvens
I matematik är den geometriska sekvensen en samling av tal där varje term av progressionen är en konstant multipel av föregående term. I finare termer är sekvensen där vi multiplicerar eller delar ett fast, icke-nolltal, varje gång oändligt, då progressionen sägs vara geometrisk. Vidare, om a är det första elementet i sekvensen, kan det uttryckas som:
a, ar, ar2, ar3, ar 4 ...
var, a = första termen
d = vanlig skillnad mellan termer
Exempel : 3, 9, 27, 81 ...
4, 16, 64, 256 ..
Viktiga skillnader mellan aritmetiska och geometriska sekvenser
Följande punkter är anmärkningsvärda så långt som skillnaden mellan aritmetisk och geometrisk sekvens berörs:
- Som en lista med siffror, där varje ny term skiljer sig från en föregående term med en konstant kvantitet, är aritmetisk sekvens. En uppsättning tal där varje element efter det första erhålles genom att multiplicera föregående tal med en konstant faktor, är känd som geometrisk sekvens.
- En sekvens kan vara aritmetisk, när det finns en gemensam skillnad mellan successiva termer, angivna som "d". Tvärtom, när det finns ett gemensamt förhållande mellan successiva termer, representerade av "r", sägs sekvensen vara geometrisk.
- I en aritmetisk sekvens erhålls den nya termen genom att lägga till eller subtrahera ett fast värde till / från föregående term. I motsats till den geometriska sekvensen, där den nya termen hittas genom multiplicering eller delning av ett fast värde från föregående term.
- I en aritmetisk sekvens är variationen i sekvensens medlemmar linjär. Däremot är variationen i elementen i sekvensen exponentiell.
- De oändliga aritmetiska sekvenserna avviker medan de oändliga geometriska sekvenserna sammanfaller eller avviker, beroende på vad som är fallet.
Slutsats
Därför är det med ovanstående diskussion tydligt att det finns en stor skillnad mellan de två typerna av sekvenser. Vidare kan en aritmetisk sekvens användas för att ta reda på besparingar, kostnader, slutgiltig inkrement etc. Å andra sidan är den praktiska tillämpningen av geometrisk sekvens att utreda befolkningstillväxt, ränta etc.